第七章 静态分析 本次设计位于 本次设计的有限元分析,只分析(题目)在静态载荷下的应力应变分布情况, 即静应力分析。静载荷下的有限元分析,计算结果是应力、应变、位移等安全性 参数,避免力学参数超过所用材质的许用应力而超过性能指标

7.1 简化模型

利用 Solidworks 进行有限元力学分析,要首先进行简化模型,将螺纹、 角、齿轮、开孔等对分析结果影响不大的要素进行简化处理。否则将真实的模型 导入到 Solidworks 进行分析, 计算量太大, 对软件和计算机硬件的负担太 导致软件崩溃或者计算机死机。简化后的模型如下图。

考虑到床面有伸出和收回两种工作状态,并且在两种状态下,床面的承重面 是不同的、伸出的时候床面主要受力面是端部斜面, 收回的时候受力面主要是床 面中部。因此本次 Solidworks 有限元分析考虑对两种工作状态分别进行分析。

7.2 材料材质

不同材料的力学参数是不同的,同一个零部件应用不同材料进行有限元分析 就会得到不同的分析结果。因此对每个零部件,按照真实情况进行添加材料是有 限元分析的关键一步。

本次设计《零件》用(材质),由于设计过程中材质的不同可能与真实材料产生的分析结果有偏差。

7.3 分析过程

添加卡具同样是有限元分析的关键一步,它约束了模型的运动方向,将我们不需要的自由度进行限制,从而在所需要的运动方向上进行分析力学分析,得到相对真实的结果。

本次只分析(零件)在静态载荷下的受力情况,因此在带过底面施加固定长具,直接固定整体结构。

第二步为网格化简化装配体。在算例树中,有键单击网格,然后选择为网格化简化模型。"简化"实用程序根据零件的大小决定"无意义体积"的内部计算。 支持的特征列在任务窗格中。可以将其抑制然后在简化后的装配体上执行分析。 本次设计是在分析前就对模型进行了简化,因此此处直接划分网格即可。

开始时,可采用粗糙网格密度来对装配体划分网格,运行算例并获得近似的结果。接下来,定义另一个算例,在其中仅包括您感兴趣的那些零部件。然后从初始算例中找出较小模型外边界上的接触力,将其应用在采用较细网格定义的算例中。

本次设计是在分析前就对模型进行了简化,因此此处直接使用软件默认网格 粗糙度进行划分。如下图。

Solidworks 有限元分析中,外部载荷囊括了模型的内力以及外界施加的力。 根据不同的使用条件,不同的模型参数,可以将这些外部载荷分为一下几类:

- (1)运动方向约束,它表示将模型的运动方向限制住或者是在该方向上运动指定的位移,两种运动方向约束分别成为固定约束和强制约束。
- (2)力,它同样是两个方面,其一是对点施加的作用力,其二是对某个点或者面相对于指定距离的旋转轴的作用力,分别成为力和扭矩。
- (3)压力,它描述的是均匀施加在某个面体上面的作用力,不同于力的是, 作用对象的不同。
- (4)温度,它描述的是模型内部的分子结构的运动剧烈程度,实在模型空间体内的载荷分布。
- (5) 惯性力, 惯性力跟模型的材料、体积有关, 它是描述物体质量对它本身速度、加速度的影响。
- (6)场,物理学上有电磁场、引力场,它是描述物体在电磁或者大质量物质周边所产生的作用力的强度。

上述介绍了 Solidworks 载荷的类型,那么如何施加载荷可以通过不面两种 方法。

(1) 将几种作用力施加到三维模型上面

这种方式是比较常用而且较为简单的方式,将作用力直接点到模型的某个点、 线、面、体上面,其余的计算过程由程序本身完成。

将集中作用力施加到软件划分之后的网格上面

(2) 将集中作用力施加到软件划分之后的网格上面

这种是比较精确但是高难度的施加方式,它也是有限元软件计算之后的结果。这种方法不常用,而且对技术人员的技能水平要求较高。

7.4 输出结果

前处理完成之后就是执行算例计算,然后输出结果,对结果进行后处理以方便技术人员查看。到这个阶段软件的计算已经全部完成,后处理只是软件输出指定的图形或者数据,用来让技术人员直接进行分析,后处理之后显示的输出结果主要分为两种。其一是分析结果结构的变形,其二是所关注的应力、应变在模型内部构造中的分布情况。我们通常用直观的轴测图,通过放大或者缩小显示比例,直观的观看模型内部力学分布结果。还可以用动态画面的形式呈现出模型本身的振动力学参数。

本次设计对《零件》的有限元分析,只分析在静态载荷下的应力应变情况, 因此后处理选择输出应力、应变、位移在结构中的图云分布情况。如下图。

